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We have studied the phonon avalanche in Ce*-doped lanthanum magnesium double nitrate
(LMN) by making observations on the spin system. A variety of experimental techniques in-
volving pulsed microwaves and pulsed magnetic fields have been used. We have measured the
phonon lifetime and made observations which are related to the form of the acoustic power

spectrum generated by the avalanche.

Consideration of the magnitudes involved suggests that

a transition probability model is adequate to explain the results obtained with our LMN +Ce
samples, and that the first half of the avalanche can be described by a function of the form

1 —tanha(t —#,5), where £ is the time at which the magnetization has fallen by 3.

Deviations

from this function in the tail of the avalanche are due to phonon decay and to cross relaxation.
The form of the hole burnt out by the avalanche has been calculated on the transition-probability

model and agrees well with observations.

Brief discussion of the fully nonlinear case is given.

This would only be applicable if the acoustic gain, the acoustic intensity, or 7'; were several
times larger than the values which we have assumed here.

I. INTRODUCTION

Paramagnetic relaxation phenomena can be
simply and directly studied by monitoring the re-
turn to Boltzmann equilibrium after the level pop-
ulations have been disturbed by applying a pulse of
microwave power. Studies of this kind have, how-
ever, often revealed deviations from the exponen-
tial recovery law which one derives by assuming
each spin to relax independently of the others with
a constant probability 1/7,. We are concerned
here with a particularly striking anomaly which is
observed: (a) when the initial disturbed state cor-
responds to an inverted spin population, (b) when
relaxation takes place via the emission of energy
into a narrow band of lattice modes (direct process),
and (c) when this acoustic energy is emitted faster
than it can be dissipated. Under these circum-
stances the acoustic field, like the electromagnetic
field in masers and lasers, will stimulate further
emission and will give rise to a “phonon avalanche.”
This in turn leads to a catastrophic collapse of the
inverted-spin population. !

We have studied the phonon avalanche in Ce®*-
doped lanthanum magnesium double nitrate (LMN)
by making observations on the spin system. A
variety of experimental techniques involving pulsed

3

microwaves and pulsed magnetic fields have been
used and are described in Sec. II. In particular we

c—AXIS

FIG. 1. TEjy cavity used in the phonon lifetime ex-
periments. Slits were made in the wall so that induced
currents would not impede the buildup and decay of the
pulsed fields. The coil around the sample consisted of
5 turns of No. 38 wire.
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FIG. 2. Effect of applying a 180° pulse in a Lorentzian
resonance line when the nutation frequency w; is equal to
the half-width at half-height Awy, of the line. The in-
verted portion is characterized by a half-width at half-
height ~0.5w;. The horizontal scale is chosen to cor-
respond to a line with Aw;/27=12.5 MHz (i.e., a Ce,
LMN line ~10 G full width at half-height).

have measured the phonon lifetime and have made
some interesting experimental observations relat-
ing to the shape of the hole burnt out during the
avalanche.

In Sec. III equations analogous to those commonly
used to describe the growth of light waves in a
laser are set up and applied to the problem of the
growth of acoustic waves in the avalanche. It is
shown that a pseudolinear approximation, equiva-
lent to a transition-probability model of the ava-
lanche, is almost certainly adequate to describe
the interaction in the Ce LMN samples which we
have studied. We have, however, briefly dis-
cussed the nonlinear case and indicated the condi-
tions under which it could become important. “The
form of the avalanche hole, which at first suggests
that the interaction is of the fully nonlinear type,
can be satisfactorily explained in terms of the
transition-probability model.

In Sec. IV we compare our results with those of
Brya and Wagner! and attempt to account for the
observed shape of the avalanche curve.

1. PULSE EXPERIMENTS
A. General

Microwave pulses at ~9.1 GHz were obtained
from a 1-kW pulse traveling wave tube manufac-
tured by Litton Industries. The tube was driven
by a lower powered traveling wave tube which, in
turn, was driven by a continuously running master
oscillator klystron. Zeeman-field pulses of up to
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60 G were obtained by passing currents of up to
10 A through four turns of 38 gauge wire wound
around the samples? (see Fig. 1). The samples
were ~3xX3X2 mm in size.

In avalanche experiments the pulse sequence
normally commenced with a 180° inverting pulse
lasting for 20 nsec. This corresponds to a nuta-
tion rate w, =yH, where® w,/27=25 MHz. The full
width at half-height of the resonance line was typ-
ically 25 MHz (10 G). Clearly therefore we have
not been able to work under ideal 180° pulsing con-
ditions for which w,; must considerably exceed the
linewidth. This makes little difference to duration
of the avalanche, however, although it does affect
certain other properties as we shall indicate later.
The effect of 180° pulse on a line whose half-width
Awy=w, has been computed and is shown in Fig. 2.

Subsequent measurements on the recovering spin
system were made, either by applying a 90° pulse
in order to generate a free-induction signal, or by
means of a two-pulse 120°-120° spin-echo se-
quence. * In the former case the largest available
H,, corresponding to w;/27~25 MHz, was generally
employed. Since the avalanche burns out a hole in
the resonance line which is several times narrower
than the line itself, e.g., ~10 MHz full width, this
value of w,; is sufficient to generate an almost ideal
free-induction signal from the spin packets con-
cerned. In monitoring the depth of the burnt-out
hole we used values of w, several times smaller
than those used to invert the line. Reduced values
of H; were obtained by operating microwave switch-
ing diodes inserted between the klystron master
oscillator and the traveling wave tubes. (Longer
pulses were, of course, used when working with
the reduced H,.)

All measurements were made at 1.4 °K and with
liquid helium in contact with the sample. The
crystals were cut with a wet string and no attempt
was made either to polish or to roughen surfaces
in the experiments. As far as possible experi-
ments were performed as soon as a new sample
had been cut, and without repeated cycling to low
temperatures. Some deterioration in the ava-
lanche-generating property was noted in older and
much used samples.

B. Experiments to Determine Phonon Lifetime in Sample

The sequence of events in these experiments is
shown in Fig. 3. The initial experiment is made
with no Zeeman-field pulse. Pulse I then inverts
the spin system and pulses II and III generate a
spin-echo signal which is proportional to the pop-
ulation difference in that part of the resonance line
which is being observed.® If the time ¢ between
pulse I and pulse II is varied (while 7 the time be-
tween pulses II and III is held constant) the echo
amplitude traces out the course of the avalanche.
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FIG. 3. Timing sequence for the phonon lifetime

experiment.

A tracing made by boxcar methods is shown® in
Fig. 4(a). Suppose now that we apply a Zeeman-
field pulse for a time ¢, between pulses I and II.

At the beginning of the interval ¢, resonance be-
tween the band of phonons which contains the ava-
lanche acoustic energy and the driving spin system
is abruptly broken, leaving the acoustic energy to
decay on its own. At the end of ¢4 the residue of
this energy is returned to the spins and the ava-
lanche is allowed to continue’ as shown in Fig. 4(b).
The reduction in the avalanche rate can then be
used as an approximate measure® of the decay of
acoustic energy during the time #4. By repeating
this experiment for several values of ¢ we were
able to estimate the phonon lifetime in our samples.
The results are shown in Table I.

It should perhaps be stressed that what we mea-
sure is not the lifetime of any specific phonon mode
or set of modes. We do not know which modes are
most strongly coupled with the Ce8* spin system,

AVALANCHE INTERRUPTED BY AH FIELD SWITCH
(b)

10 20 30
TIME AFTER INVERSION (usec)

FIG. 4. Boxcar tracings showing the phonon avalanche
with and without the Zeeman-field pulse. The staircase
timing function was obtained from a HP 524B counter
with time interval plug-in unit 526B.

nor do we know the probabilities for mode conver-
sion in our sample. The measurement is in fact
akin to the measurement of a “reverberation time”
of a hall in classical acoustics. The chief signifi-
cance of the result {50, ~ 20 psec from our point
of view lies in the fact that the phonon lifetime is
appreciably longer than the time which character-
izes the avalanche itself. It seems therefore that
loss of acoustic energy can only play a minor role
during the buildup of the avalanche. It may also
be noted that the phonon lifetime is sufficient to

TABLE I. Experimental results.
Spectral
Concentration Avalanche Inversion Phonon diffusion
(nominal) Linewidth time? T, efficiency lifetime time®
Sample %) ()] (usec) (usec) %) (usec) (usec)
A 0.3 8 7.7 4 80 20+40% 130
B 0.5 12 7.8 4 88 80 .
C 0.5 13 9.5 89 20 +20%
D 0.8 12 1.7 0.84 65 12
E 1.3 25 ~1.6° 0.32 44 1.6
F 2.0 38 No 0.24 54 1.7
avalanched

2Defined as the interval between inversion of the line
and 50% collapse of the initial inverted magnetization.
®Time for initial 1/e fall of stimulated echo for
7=150 nsec. See text.
¢ Avalanche time is approximate because of rapid decay

of the inverted magnetization due to spectral diffusion.

dInverted magnetization was observed to collapse in a
time ~2 usec but this was apparently caused by spectral
diffusion.
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allow for several complete traversals of the sam-
ple.® All resonant Ce®* spins, whatever their loca-
tion in the sample, will therefore be equally in-
volved.

C. Form of Hole Burnt Out during Avalanche

So far we have implied that the hole burnt out by
the avalanche has a more or less smooth and reg-
ular form similar to, though narrower than the
resonance line itself. Pulse methods enable us to
investigate the burnt-out hole shape in some detail
and reveal certain surprising and unexpected fea-
tures. For the experimental pulse sequence we
refer to Fig. 5. Pulse I is as before a 180° in-
verting pulse; pulse II is a 90° pulse applied at a
selected stage in the development of the avalanche.
1t is easily shown that, for an inhomogeneous line,
the free-induction signal generated by a 90° pulse
is the Fourier transform of the line shape. Since
our line shape can be regarded as a superposition
of the original inverted line shape (Fig. 2) and the
hole burnt out by the avalanche we expect the free-
induction signal to be given by the sum of the two
appropriate Fourier transforms. The first trans-
form, that of the initial line shape, will be charac-
terized by a decay time ~10 nsec and will be
masked by cavity ringing and other overload ef-
fects in the apparatus. The second transform (or
at least the latter part of it) is visible as a free-
induction trace. ‘

Figure 6 shows free-induction signals obtained
by combining several oscilloscope photographs at
different gain settings.!® In Figs. 6(a) and 6(b) the
maximum available H, (yH,/27~20 MHz) was used
in the 180° pulse in order to invert as much of the
line as possible. Figure 6(a) shows the free-induc-
tion trace obtained by applying the 90° pulse 6 usec
after the inverting pulse, i.e., at a point about 4
way down the avalanche. In Fig. 6(b) the 90° pulse
was applied 20 psec after the inverting pulse, i.e.,
when the avalanche was virtually over. Generally,
the effect of applying the 90° pulse later was to in-

FIG. 6. Free-induction signals arising from the hole
burnt out in the resoance line by the avalanche in a 0.5%
sample: (a) was obtained by applying the 90° pulse 6
usec after the inverting pulse, at which time the mag-
netization had fallen by §; (b) was obtained by applying
the 90° pulse 20 usec after the inverting pulse, i.e., at
the end of the avalanche; (c) and (d) show the results of
a similar experiment in which Hy, and therefore the
spectrum of spin packets inverted during the 180° pulse
was ~8x smaller.

crease the amplitude and, to a slight extent, to
shorten the period of the oscillatory feature which
appears in the tail of the free-induction signal. If
times > 20 usec were allowed to elapse after the
end of the avalanche before applying the 90° pulse
the induction signal was weaker, presumably be-
cause of the filling in of the burnt-out hole by cross
relaxation.

The experiments were repeated with reduced
values of H, in the inverting pulse so that the effect
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FIG. 7. Portion of a resonance line which is inverted
by a 180° pulse if w;<linewidth. Here w;~12Xless
than the half-width of the resonance line. The horizontal
scale is chosen to correspond to the application of a
180° pulse 250 nsec long.
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FIG. 8. Spin-echo signals generated from a resonance
line partially burnt out by an avalanche. Concentration
=0.5%. Two echo generating pulses each 25 nsec long
applied (a) 6 usec, (b) 20 usec after a 30-nsec inverting
pulse. Values of H; used to generate echoes were the
same as the values of H; used in the inverting pulses,
and not reduced as in the phonon lifetime experiments.

of inverting narrower spectral intervals could be
studied. (When w; « linewidth a 180° pulse inverts
a portion of the line such that its half-width at
half-height ~0.5w;, see Fig. 7.) Figures 6(c) and
6(d) show the result of one such test in which
vH,/27~2.5 MHz. In Figs, 6(c) and 6(d) the 90°
pulses were once again applied at 6 and 20 ysec
after the inverting pulse. Exact comparisons are
hard to make, but it would appear from Figs. 6(b)
and 6(d) that the free-induction signal is ~4 times
longer in this latter case, and correspond to the
burn out of a hole which is similar in shape but

~4 times narrower. Some further tests were made
to try and ascertain how far H, could be reduced
without causing these effects to disappear entirely.
It was observed that the free-induction signal (due
to the hole burnt in the line) underwent a drastic

reduction when w,;/27 was reduced below ~1.5 MHz.

We believe this to be due to the filling in of the hole
by cross relaxation as fast as it is burnt out by the
avalanche. M

As we mentioned at the beginning of Sec. IIC,
overload effects made it impossible to observe the
initial portion of the free-induction trace. Since
the echo signal is, ideally, given by two free-in-
duction signals back to back, the effects should
therefore be more clearly visible in the spin-echo
signal. Although in practice this turned out to be
an inconvenient way of studying the shape of the
hole - largely because of the short phase memory
times — we show here two echo photographs ob-
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tained at different stages in the avalanche in a
0.5% sample. The echo in Fig. 8(a) was obtained
by applying two microwave pulses 6 psec after the
inverting pulse. In Fig. 8(b) an interval of 20 psec
was allowed to elapse. The echoes show the same
oscillatory feature observed in the free-induction
signal. It should be noted that these echoes were
generated by applying large microwave fields H,
and not reduced fields as when sampling the center
of the avalanche hole. The reduced fields, as
used, for example, in the phonon lifetime experi-
ments, generated echo signals of longer duration
and with more regular form. .

We were interested in finding out to what extent
the traces in Fig. 6 betray the nature of the acous-
tic fields as they exist in the fully developed ava-
lanche. The traces themselves are, of course,
the cumulative result of the spin-phonon interaction
throughout the avalanche from its inception on-
wards. We were able to make a separate test of
this point as follows: A modified experiment was
performed by applying a Zeeman-field shift and
replacing the spins which had generated the ava-
lanche with spins from the wings of the Ce®* line.
The acoustic field then burnt a new hole leaving its
imprint on these new unused spins. The new hole
was examined, as before, by applying a 90° pulse
and observing the free-induction decay. This mod-
ified procedure!? gave essentially the same induc-
tion signals as those!® in Fig. 6. For practical

purposes we may therefore assume that the peri-

odicity seen in the free-induction signal in the
straightforward 180°-90° pulse experiment arises
primarily from interaction with the more intense
acoustic fields which are generated in the mature
avalanche.

D. Measurement of T,

T, was measured by means of a two-pulse spin-
echo sequence. The results are given in Table I,
They represent an estimate of the time measured
from pulse I of the sequence, in which the echo
gignal falls to 1/e of its maximum value. The time
was not easy to determine accurately since (a) the
echo envelope was not exponential and (b) the re-
sult was liable to be modified by “instant diffusion”!*
effects. Nonexponentiality of the envelope (further
complicated here by modulation at the N!* nuclear
precession frequencies) was probably only a minor
source of error,® Instant diffusion, on the other
hand, led to values of T, several times too short
unless suitable precautions were taken. The
shortening of the apparent phase memory occurs
as a result of the abrupt change in local dipolar
fields which occur when the spins are inverted by
the second pulse of the two-pulse sequence. The
effect can be reduced by turning over smaller
fractions of the resonance line, either by using
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a small H, (and longer pulses), or by making the
measurement in the wings of the line. In this way

a limiting value for T, can be obtained. This pro-
cedure does not necessarily give a value of T,
which accurately describes the dynamical behavior
of the spin packets during the avalanche, since the
avalanche itself changes local fields and introduces
instant diffusion. We are, however, primarily in-
terested here in obtaining the correct order of mag-
nitude. As may be seen by comparing Fig. 4(a) and
the times in Table I, T, is comparable with the time
taken by the magnetization to collapse during the
avalanche.

E. Test for Spin-Phonon Coherence

The resonant transfer of energy from a precess-
ing spin system to an acoustic wave will be charac-
terized by some degree of coherence, although this
may well be masked in the bulk of the sample by the
occurrence of many independent regions in which

. this transfer is taking place. We shall argue later
(Sec. II B) that in the more dilute samples, this
coherence time is effectively equal to the autocor-
relation time of the acoustic field generated in the
avalanche, and that it is an order of magnitude
shorter than the spin-echo phase memory time.

In order to confirm this point experimentally we
performed the following test aimed at setting a
lower limit on the spin-phonon coherence time.

The system was set up as in Sec. II A for the
observation of the avalanche. At a chosen time
after pulse I a small displacement AH was made
in the Zeeman field by applying a current pulse to
the coil surrounding the sample. The current pulse
was maintained for a time Af such that'® y AHA?
=180°. By reversing the phase of the spin system
such a pulse should arrest growth of the avalanche
(or avalanches if several regions of the sample are
involved) for a time comparable with the coherence
time of the interacting systems. Under no circum-
stances were we able to observe any effects. Since
an extension of the time required for full develop-
ment of the avalanche by 0.5 usec would have been
clearly visible, we conclude that any coherence
times are shorter than this.

F. Change of Samples, Half-Fall Times, Concentration Effects

We have examined a number of different samples,
partly as a check on our principal observations,
and partly in order to see how they depend on spin
concentration. Some of the results of these experi-
ments are shown in Table I. The characteristically
shaped avalanche curve was obtained for all but the
2% sample. In this sample the portion of the line
inverted by the 180° pulse was considerably
smaller than the total linewidth and collapsed
rapidly because of spectral diffusion from the re-
maining uninverted portions of the line. If was
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impossible to judge from the shape of the decay
curve whether or not a phonon avalanche was con-
tributing to this collapse.'” A free-induction signal
with a periodic tail, arising as a result of the ava-
lanche (Sec. IIC), was seen in all but the 2% sam-
ple. This again does not prove conclusively that

no avalanche occurred, since rapid spectral diffu-
sion would also be likely to blur out any sharp
features in the avalanche hole. The phonon life-
time was checked in the two weaker samples.
Shortening of the phase memory and of the avalanche
time made it difficult to execute all the steps in-
volved in this experiment at the higher concentra-
tions. The spin-phonon coherence time experiment
(Sec. IIE) was performed only once — with a 0.5%
sample.

If we make the transition-probability approxima-
tion and introduce the experimentally observed fact
that the phonon lifetime is longer than the total ava-
lanche time, we find (Sec. III B) that the decay of
the initial inverted magnetization should roughly
follow the curve

Mz,w Z(%Mz.w.o)[l - tanhat,w(t— tllz,w)] ’ (20 1)

where M, , is the magnetization, 2a;,, is the ini-
tial phonon power gain constant (before burn out),
and fy,, , is the time at which M, , has collapsed
halfway. M, ,, o, and?,, , refer to a specific
spectral position in the inhomogeneous line. In
most experiments this is the center of the line and
we shall drop the subscript w wherever there is no
likelihood of ambiguity. Equation (2. 1) will be-
come inaccurate in the tail of the avalanche, where
phonon decay and cross relaxation play a relatively
larger role (Sec. IVB). It will be good enough,
however, to provide a relationship between 2a;,
and the time interval T,,, which elapses between
the inverting pulse and #,,. If S is the ratio of the
total available avalanche energy (primarily spin
energy) to the initial acoustic energy, it is shown
in Sec. INI B [Eq. (3. 24)] that

Ti2=(1/2a,)InS. (2.2)

Ty, will depend on N, , o, the initial excess of in-
verted spins/cm?® per unit spectral interval, both
via @, and via S. «, is directly proportional to
N, w,0- S is directly proportional to N, 0, Pro-
vided that comparisons are made between samples
at the same initial lattice temperature. !®

For rough comparisons between samples we may
ignore variations in S (which is ~10*) and merely
take Ty,, as a measure of the gain constant 2a,.
In a series of experiments performed at the same
temperature T we should then expect to find that
1/T,,, is proportional to the product of the concen-
tration and the inversion efficiency divided by the
linewidth. The agreement with this prediction is
very poor as may be verified by glancing at TableI.
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We do not fully understand the reasons for this.

At the 1.3% concentration T,,, was probably short-
ened by spectral diffusion effects which deformed
the avalanche curve. The remaining results hard-
ly show any better agreement, however. Some
discrepancies may have been due to the difficulty
of measuring the inversion efficiency by spin
echoes when the avalanche time is of the order

of the time required for the two-pulse sampling
sequence.'® Others may have arisen in the line-
width measurements, which showed a disturbing
tendency to change in successive low-temperature
runs. 2

In view of our lack of success in confirming a
proportionality between 1/7y,, and N, ,, o by com-
paring different samples we have studied the re-
lationship by using the microwave pulsing condi-
tions to vary N, .- This can be attempted in two
ways. The simplest is to apply a pulse inducing
a spin nutation angle of less than 180°. An alter-
native method is to increase the recurrence rate
of the pulsing cycle so that the spin system is par-
tially saturated at the beginning of each experiment.
Both of these procedures are open to some objec-
tions, in particular the latter which may result in
some heating of the lattice phonons, ! but both
have in practice given fairly good results. . Curves
of 1/Ty,, plotted against the initial value of N, ,
(see, for example, Fig. 9) have shown a reasonable
degree of linearity. Deviations at long values of
Ty, are easily explained by the increased impor-
tance of spectral diffusion and phonon decay in this
limit,

Spectral diffusion, although clearly responsible
for influencing a number of observations, proved
difficult to parametrize (see Ref. 11), and we even-
tually abandoned the attempt to employ it to give
quantitative interpretations of the results. We
have, however, retained a small sampling of our
spectral diffusion measurements and included them
in Table I. These were obtained in a series of
stimulated echo experiments. They are the e-fall
times as a function of the time 7 between pulses II
and III, when the time 7 between pulses I and II was
set at 150 nsec. They give a rough measure of the
time taken for a spin packet to spread out into a
distribution ~2 MHz wide. The times required for
diffusion to spread across wider intervals may be
gauged from the graphs in Fig. 16 which trace the
filling in of holes burnt in the resonance line in a
0.5% sample.

III. THEORY
A. Interaction of Acoustic Waves with a Two-Level System

The buildup of a phonon avalanche in a paramag-
netic material may be expected in some ways to
resemble the growth of an electromagnetic wave
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FIG. 9. Reciprocal of avalanche half-fall time 7,

plotted as a function of the initial population inversion
for a 0.5% sample. (Maximum experimental inverted
signal, shown here as unity, was ~0.85 of the unin=-
verted signal amplitude.) (a) Inversion reduced by ap-
plying <180° inverting pulse; (b) inversion reduced by
o]berating with a pulse recurrence rate causing partial
spin saturation.

in a laser crystal. Numerous discussions of the
latter problem have appeated in the literature. 22~27
We shall therefore attempt to formulate the ava-
lanche problem in a parallel manner. This will
facilitate comparison with the laser work, and

will enable us to discuss the possibility of non-
linearity in the spin-phonon interaction. In making
this formulation, we shall, wherever possible,
adapt concepts which are already familiar in the
field of magnetic resonance.

We first parametrize the interaction between
spins and acoustic waves. For the case of a
Kramers doublet this interaction is commonly
specified by adding a term

(,7,k,1=1,2,3) (3.1)

to the spin Hamiltonian. G,;, is a fourth-rank
“magnetoelastic” tensor, e, is the strain tensor,
and H; are components of the Zeeman field H,.
¥ induces transitions between the eigenstates
of the unperturbed Hamiltonian %, =pupg;;H;S,.
Since we are _goncerned with experiments per-
formed with Hy L the ¢ axis in an axial material
we can at once reduce the number of indices in
Eq. (3.1). We take the z axis (i =3) parallel to
ﬁo. Then S, is a good quantum number and transi-
tions are induced solely by S,(=S;) and S,(=S,),
leaving

HKsr=KpGimenH;S;

(3.2)

At this point we make some additional arbitrary
simplifications. We assume (a) that the medium
is acoustically isotropic and (b) that all the in-
dependent parameters in G;;,, have the same nu-
merical value G’, and (c) we ignore interactions
with longitudinal waves. It is then sufficient to

35z = 1pHo(Gayps Sx+G32klsy)ekl .
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consider the interaction of the spin system with a
single (linearly polarized) transverse wave char-
acterized by an oscillating strain

s =25 cos[wt ~ (w/v)t = V]

i[w'-wh(w/v)fl+e-i[w-wt+(w/v)ﬁl) ,

(3.3)

in which ¢ is the distance measured along the direc-
tion of propagation of the wave.?® In a system of
spin coordinates rotating about the z axis with a
phase factor eil-«t+{w/oX1 thig strain is represented
by a vector of length s lying along the x axis. (The
strain s e #l¥-wt+tw/v%1 wil] not induce transitions. )
The Hamiltonian in this system becomes g,

=G ugHys(S,+S,) and can readily be reduced by a
further rotation of the spin axis to give

=sle

305 =CGugHesS, (3.4)

where G=v2 G'. An appropriate value for the
coupling parameter G can be obtained from the
direct process lattice relaxation time 7,4 If we
derive T,, from 3Cg;, allowing for two transverse
waves, but ignoring the longitudinal component,
we find that

1 (GpgHy)kTwd

T 2niv%p ’
where v is the transverse sound velocity, p is the
density, and w, is the paramagnetic resonance
frequency.

By comparing (3. 4) with the familiar Hamiltonian
¥p =g g H,S,, which would describe the interaction
of a spin system (of isotropic g) with a linearly
polarized rf field H, = 2H, cos[wt - (w/v)¢ = V], we
can at once infer the strain-induced nutation rate.
In the rotating coordinate system adopted here H,
would be represented by a vector H, lying along
the x axis and the nutation frequency would be given
by w.=yH, where y =gug/%. Instead of H, we have
a linearly polarized strain wave s, =2s cos[w?

- (@/v)¢ -], and a Hamiltonian 305 = G5 HysS,.
The nutation frequency is therefore w,=T, where

(3.6)

(3.5)

F=GIJ.BHO/7’Z .

The over-all changes associated with nutation
and precession can be defined quantum mechani-
cally in terms of the density matrix

_| P11 P
P=1 %
P12 P22

and described macroscopically by means of the
Bloch equations:

aNx:(Aw _a}}i) y__Z\_T_:g

ot ot T3

, (3.7a)
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9 9
Ny (Aw+—ip->Nx7-N—%— TsN, , (3.7b)

ot ot Ty

9
—I—Vi: I'sN,

o7 (3.7¢)

The following points should be noted in connection
with Eq. (3.7):

(a) The T, term has been omitted in (3. 7c) since
T, is several orders of magnitude longer than any
times which concern us here. Enhanced relaxation
due to the avalanche is, of course, taken into ac-
count in the terms I'sN, and I'sN,.

(b) The spins precess in the rotating system
with a frequency Aw +8y/9¢, where Aw is the dif-
ference between w and the Larmor frequency of a
given spin packet. The term 83/8¢ is an additional
frequency representing gradual changes in the
phase i of the acoustic wave which here determines
the rotation e t¥-@t+(w/vX1 of the coordinate system.
In the laboratory system the coordinate axes rotate
at any given instant with a frequency w - 83/8¢.

(c) The loss of coherence of the spin system in
relation to the rotating coordinate axes used in
(3.17) is not determined by random perturbations
of the spin system only. If the spins are driven
by a noise field, as here, an additional random
element will appear due to fluctuations in the phase
angle ¥ of the coordinate system. It is convenient
to combine both these effects in a single decay
constant Tz'. (Tz' is used instead of T, to emphasize
the difference between the present case and the
more usual case where the field driving the spin
system is monochromatic. )

(d) The quantities N, are defined from the den-
sity matrix by N,;=3NTr(po;), where N is the total
number of spins/cm? (or, where appropriate, the
total number of spins/cm® belonging to any given -
spin packet), and the o; are the Pauli spin ma-
trices. We thus have N,=N(pys+ pfs), N,=iN(p,,
= p%), N =N(p;; - ps). N,, N,, and N, can be re-
garded as components of a precessing vector N.

N, is the -excess number of spins/cm? in the upper
state. For the case of an isotropic g the Bloch
equations could equally well have been written in
the more familiar form in which the magnetization
components M; =g LgN; take the place of the N;.
Here, however, the field does not interact with
M; and we are concerned instead with the stresses
P,:G';LBHON, which result from spin precession.
In the laboratory system P;=P, and P,=P, are
oscillating stresses in phase and in quadrature
with the strain, the linearly polarized traveling
stress wave being given by

Plab - Re[(P,, +2~Py)ei[w—wt+(w/v)51] .

The component P; =P, is a small static stress
which can be ignored.
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We now consider the effect of these oscillating
stresses on the growth of a plane acoustic wave.
If we introduce P;, when deriving the differential
equation for an elastic wave traveling in the ¢ di-
rection in an isotropic medium we obtain

e 18% (1 \0%p,p)
s = (o) o (3.8)

where € is the strain, »2=¢/p, and ¢ is the elastic
constant. Substituting € = 2s cos[w? - ¢ - (w/v)t],
and assuming that we are dealing with a more or
less monochromatic acoustic wave, whose phase i

and strain amplitude s change slowly over one wave-

length (or cycle), we canderive from (3. 8) the two
first-order equations?

3 18s_ wP,

Rl I = - 3.9a
TRORT ——-—%4[)1) an, , ( , )
% 19 _ wh,
SB§+U 5t —+4p03—+aNx ) (3. 9b)
where
GlupHw GupHyw
Q_W_Zm—v%— . (3.90)

The expressions 8s/8¢ +(1/v) 8s/8¢ and 9yp/d¢
+(1/v) 8y/8t give the rates of change of s and ¥
from the point of view of an observer traveling
with the wave. These two equations together

with the Bloch equations (3.7) describe the mutual
interactions of the spins and the traveling wave.

" B. “Transition-Probability” Approximation

In the initial states of the avalanche s will be
small, N,, N, will be < N,, and N, itself will be
scarcely affected by the acoustic interaction. In
this regime the medium constitutes a linear ampli-
fier for the acoustic waves. Even outside this
regime, when the avalanche has continued long
enough to cause significant burn out of N,, a
pseudosteady state may exist in which the medium
acts as a linear amplifier, although here it will be
an amplifier of steadily diminishing gain. Linear
gain of this type occurs if s, 9y/8¢, and N, dimin-
ish by relatively small amounts during the time
Tz' [as can be shown by making an approximate in-
tegration of (3.7a) and 3.7b)]. The essential con-

dition is that
I'sT,<1 . (3.10)

If this condition is met, N,, N,<< N, and are given
by

N _DsN, (T, (Aw +8y/0t)
1+ (TP (Aw +89/0t)F ?

+ (T w+,¢/ ) (3.11)
N I'sN, T,

vT14 (T2 (Aw +8y/08)?

Inserting the values (3. 11) in the traveling wave
Eqs. (3.9a) and (3. 9b) we find that the growth in
amplitude and the phase change of the wave as it
travels forward in the medium are given by

aTToN,s

ds (9s 1 8s

az=(55*757>=1+<T;)2<Aw+aw/et)2 (3.12)
and

dy_(oy 189\ al(T2)°N, (bw +0ip/8t)

d:"(ag‘“v at)' 1+(T2)2(Aw+8¢/8t)3 (3.13)

For a homogeneous line the amplitude gain factor,
when the acoustic wave is on exact resonance

(Aw +89/8¢=0), thus becomes e ‘" 74¥%, The re-
sults are easily generalized for the case of an in~
homogeneous line made up of a number of spin
packets, For a distribution of spin packets which
is symmetrical about the frequency w ~ d/8t.0f
the incident wave there is no resultant phase shift
and the amplitude gain constant can be written as

N, dw'

!
al'Ty T+H(TE *
where
- &
w —-Aw+at

and N, , denotes the excess spin population per
cm® per unit spectral interval (in rad/sec units).
If the linewidth > 1/T;, N, , can be taken outside
the integral and we derive an amplitude gain con-
stant with respect to distance traveled:

2
a,;,:mPN,'u,:Muﬂﬂ (3.14)

&2 po’n ’
The corresponding amplitude gain constant with
respect to time is @, =va,. Power gain constants
are 2o, and 2q;,.

The gain is a function of the position in the reso-
nance line and also of the degree of burn out as
described by the parameter N, ,. Since Ng, o
changes with time the amplification of a wave is
therefore not linear in the strict mathematical
sense. We can, however, assume the principle
of superposition in our treatment without introduc-
ing serious errors so long as the condition (3. 10)
holds good. Then, by Eq. (3.11), N, , and N, ,,
which determine the rate of growth of the wave,
are proportional to the value of N, , at any moment
and we can make a Fourier decomposition of the
wave into frequency components and compute the
amplified signals independently of one another.
Since the approximation which we have made in
Eq. (3.11) is equivalent to using a “transition-
probability” model®® we can conveniently describe
this as the transition-probability approximation.
The situation is entirely different if I'sT, > 1.
Growth of the wave and the magnitudes of N,, N,
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(which may now exceed N,) become dependent on
the way in which the two-level system was prepared
at an earlier time. There will be considerable
cross coupling between frequency components and
Fourier decomposition of the wave and calculation
of the individual responses no longer affords a valid
procedure.

We pause here and estimate some orders of mag-
nitude for samples of the kind which we have used
in our experiments. In order to have some definite
point of reference we assume the following experi-
mental conditions: wy/27=9.1 GHz, T=1.4°K,
N=10" spins/cm?®, resonance line Lorentzian in
shape with a half-width at half-height Aw /27
=123 MHz (corresponding to a full width at half-
height ~10 G). Under these conditions the excess
number of spins/cm? in the lower state in Boltz-
mann equilibrium Ntanh(fiw/kT)=1.58 X10%; the
excess spin concentration per unit spectral inter-
val at the line center N, o=Niw/2kT/mAw
=6.4x10° sec. For the remaining material pa-
rameters we adopt the values®™®® » =2x10° cm sec™,
p=2.1, and 1/TT,; =41 deg™ sec™! at 9.1 GHz.
From Eq. (3.5) we thus obtain GuzH,=6.53x107
erg, which, by Eq. (3.6), leadsto anutation con-
stant I'=6.2x10" sec™ [I'/27=99 kHz per micro-
strain (10°® strain) unit]. According to Eq. (3.14)
the power gain constants for a 100% efficient in-
version are 2a, =10 cm™ or 2¢,=2.0 psec™. In
practice we have been able to obtain inversion ef-
ficiencies ~80% corresponding to power gain con-
stants of ~8 cm™ or 1.6 psec’.

It is useful to have an ideal of the over-all gain
G, which takes place before the thermal noise field
initially present in the sample reaches high enough
intensity to cause observable burn out of the elec-
tron-paramagnetic-resonance (EPR) line. It is
also of some importance to know approximately
what strain amplitudes s are generated in the
process so that we can see, from Eq. (3.10),
whether the transition-probability analysis is
likely to be valid. As shown in the theory of specif-
ic heats the energy/cm?® per unit spectral interval
in thermal equilibrium due to the two transverse
modes is given by E, o=#w®/[70%("“/*T - 1)]. The
acoustic energy E, /26w present at the midava-
lanche point can be found by equating E, 1,2~ E 0
with the energy per unit spectral interval
i7weN,, o discharged by the spin system and in-
serting the appropriate avalanche bandwidth 6w.
[The fraction of energy lost = (T pononX 2a;) ' = 2%
and can be ignored.] We thus find that the ratio
between the acoustic energy in midavalanche and
the acoustic energy initially present

Eu1/2/Eu0=6=1+1N, , (" “/*T - 1)/40?=3x 10"

This corresponds to ~10 ¢ folds. According to our
estimate 20, =1.6 psec™ for the power gain factor,
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it should therefore take ~6 usec after the 180° spin
inversion to reach the midpoint of the avalanche
[see Eq. (2.3)]. The observed times were actually
about half as long again as this for samples having
concentrations and linewidths close to the values
assumed here, suggesting that 2a,~1.1 psec™!
would be a more realistic value for the power gain
constant.

The strain amplitudes reached in midavalanche
can be estimated by expressing E , 1,26w in terms
of acoustic strain. Let us suppose that the acous-
tic field is made up of linearly polarized waves
sp=2s cos(wt — P — wg,;/v) of both traverse types
traveling in three orthogonal directions ¢;. Then
the acoustic energy/cm?® is 6pv®s®. Equating this
to %h’woN,,w'oéw (i.e., to the spin energy release)
we have s = (3%weN,, ,.o0w)/2pv%. Inserting nu-
merical values (5w/27=~10 MHz) we obtain s~ 3.4
%1078, The corresponding nutation frequency
I's/2mis 0.34 MHz. If we now take T, as the spin-
echo phase memory time 7, ~4 ysec we obtain
I'sT,~9, which suggests that the transition-prob-
ability approximation ceases to be valid sometime
before the midavalanche point is reached and that
a full nonlinear analysis should be made. How-
ever, as we pointed out earlier, T represents
the relative coherence time of the spin system and
of the fluctuating acoustic field responsible for
driving it. This value of Té will be shorter than
the value of T, which measures the coherence of
the spin system in relation to a monochromatic
rf field.

Because of the large over-all gain which takes
place, even before there is any appreciable burn
out of the line, it is fairly easy to predict the form
of the acoustic spectrum which is generated at this
stage, irrespective of the line shape. The initial
acoustic spectrum E, ; is essentially flat over the
region concerned. The spectrum E , developed
during the avalanche will therefore have the same
form as the power gain factor e2%¢f =¢?"T ¥z,0®,
This expression is a strong function of N, , and de-
pends primarily on the line shape near the peak of
the line which can be approximated by a parabola.
For a Lorentzian line we have N, , o~ Npax ,
X[1=(Aw/Awr)?]. The acoustic spectrum for times
which occur several exponential gain periods after
the start of the avalanche (but which do not extend
into the range where significant burn out occurs)
is therefore given by

exp(2ma TN, 0vt)

=exp(2m TN, ,ot) exp{ - [(Aw/Aw;)?2m TN, wt]} .

(3.15)
At the peak of the acoustic spectrum E, =E,,
=E,,0exp(27aT Np,,vt). The form of E,, given by
Epmay €xp[— (Aw/Aw;)?], where
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(3.18)

i.e., the ratio between the width of the initial in-
verted line and the width of the acoustic spectrum
is approximately given by the root of the power
gain exponent. For our set of numerical values
the ratio Aw,/Awg~2.5 to 3 when the acoustic
intensity corresponding to visible burn out is
reached. The result is fairly insensitive to er-
rors made in estimating the over-all power gain.
It must, however, be modified by inserting a re-
duced value of Aw; if the 180° pulse inverts less
than the full line (see Fig. 7).

The result (3.16) enables us to form an estimate
of the coherence time which characterizes the
spin-phonon interaction. The Fourier transform
of the power spectrum exp[- (Aw/Awg)?] yields the
autocorrelation function exp[-(AaZ#%/4)]. The
autocorrelation time ¢,~2/Aw;~6/Aw, is amea~
sure of the time which the phase 3 (and the ampli-
tude s) of the strain energy undergoes a random
change in any small volume of the sample. These
random fluctuations must be taken into account in
calculating the decay constant T used in (3.7) and
in the test expression (3.10). Ideally a convolution
of the phase memory decay function and the acoustic
autocorrelation function should be made in order to
derive the appropriate decay time. However, since
t,(~6/wy ~'16 nsec) is short® compared with 7,
(~4 psec),” and since we are only concerned with
the approximate order of magnitude in applying
the test (3.10), it will suffice to write 1/75=1/T,
+1/t,. Using the previously estimated magnitude
5=3.4%10¢ for the strain amplitude in midava-
lanche we thus obtain I'sT,~0.16. Even allowing
for some margin of error in the estimates of T,

s, T, and for some changes in s and T, as the ava-
lanche develops, it seems that we shall therefore
be reasonably well justified in using the transition-
probability approximation to treat our standard
case. However, since a change in the conditions
of the experiment could easily modify both T£ and
s, we shall briefly review the question of nonlinear
interactions between the acoustic field and the two-
level system later on (Sec. IIIC).

We now calculate the form of the hole which is
burnt out in the resonance line. According to the
transition-probability approximation the acoustic
energy E , per unit spectral interval grows ac-
cording to the equation

Awg = Awy/(2m TN o, vt) 2

dE,

T (3.17)

=E X2mIN,, v =20, ,E, Neww ,
Nz. w,0
where 2a, , is the power gain constant before burn
out [see Eq. (3.14) et seq.]. The phonon lifetime
experiments show that the sum of the spin and

phonon energies remains approximately constant.
Thus
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E,+3hwN,, ,=W, , (3.18)

where W, is the total available avalanche energy
at a frequency w+ Aw in the resonance line. Solving
(3.17) and (3. 18) we obtain

E,/W,=3{1+tanh[a, ,(t =ty WW./5 0N, 0]}
Nfio/2W,=5{1 — tanh[ @y, ot = ty/z, )W/ 2 BN, 0]},

where {,/5 , is the avalanche half-fall time at which
the available energy is equally divided between the
spins and the acoustic field. As we have seen ear-
lier the initial acoustic energy E, , is ~107* of the
total available energy. We can therefore approxi-
mate %Iin,'w,o ~W, and rewrite the above equations
in the form

E,=3W,[1+tanha, ,(t~ 1y, )] (3.19)

N w=2N,, o0l1 - tanha,,  (t = t1/5,,)] - (3. 20)

The half-fall time at any point in the spectrum can
be inferred from the initial acoustic power spec-
trum present at the time £, of the inverting pulse.
From (3.19) we have

at,w(tllz,w ~ ) =tanh™(1 - ZEw.U/Ww)

sIn(W,/E,  ~1)

i

R

sIn(W,/E, o . (3.21)
Combining this with Eqgs. (3.19) and (3. 20) we have

E, =3 W1 +tanh[a, ,(t -1) - 1n(W,/E, )]} ,
(3.22)

N, =5N, ,o{l - tanh[a,, ,(t - £,) - 3 In(W,/E, )]} .

(3.23)

The half-fall time Ty, =4,,5 - ¢, described in the
experimental section is given by

T1/2=(1/20; yoa) In(W,e0/Ey)
~(1/2a4, your) In(Spem) » (3.24)

where S, is the ratio of the available spin energy
to the initial phonon energy (per unit spectral in-
terval), and where a,;, W, have been assigned
values which correspond to the center of the reso-
nance line. (Em,0 =E, represents the initial white
noise spectrum which is flat.) The spectral form
of E, and N, , in Egs. (3.22) and (3. 23) can be
calculated by substituting appropriate distribution
functions for a,,,, W,, Ng . For instance, if
the resonance line is Lorentzian a;, ,= ¢, jealws
Wo=WieaL u Ne,w,0 =Nz,pea.k,0Lw9 where L,

= Aw} /(Awf +Aw?) and Q¢,peaks Wyeaks Nog,peax AT€
values corresponding to the center of the line. In
some circumstances a parabolic approximation
may be more convenient. The results calculated
by (3.22) and (3. 23) are, of course, only approxi-
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FIG. 10. Burn out of resonance line according to
transition-probability theory [Eq. (3.23)]. Full width
at half-height of resonance line is 25 MHz. Power gain
constant 2a,=2 psec™! at center of line. (a) Acoustic
energy/spin energy ~ 0. 01 in center of line; burn out
negligible, (b)—(e) burnout 1.5, 3.0, 4.5, 6.0 usec
later. (Initial ratio of acoustic energy/spin energy
~0.3x10",)

mate in any case since they assume an infinite
phonon lifetime. Experiments suggest that this
assumption does not introduce serious errors
during the first half of the avalanche, but that it
is a poor one to make for the latter half. This
point is taken up again in Sec. IV.

Some examples of burn-out spectra calculated
from (3. 23) for the case of a Lorentz line are
shown in Fig. 10. Figure 11 gives the correspond-
ing Fourier transforms. Comparison may be made
between these Fourier transforms and the experi-
mental free-induction signals in Fig. 6. The
acoustic energy spectrum [Eq. (3.22)] is merely

o

ARBITRARY UNITS

Q

A .2

pnsec

FIG. 11. Fourier transforms of burnt-out lines (b)—(e)
in Fig. 10. (a) is FT of (b), etc. These curves corres-
pond to the free-induction signals which would be gener-

ated by an ideal 90° pulse. (Compare with experimental
curves in Fig. 6.)
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FIG. 12. Autocorrelation function of acoustic field
generated during avalanche burn out shown in Fig. 10(e).

proportional to the holes burnt in the Lorentzian
line and is not shown. Its Fourier transform gives
the acoustic autocorrelation function as shown in
the example in® Fig. 12.

The presence of an acoustic power spectrum with
an autocorrelation function such as that shown in
Fig. 12 can be used to explain the result obtained
in the modified burn-out experiment reported in
Sec. IIC. If the Zeeman field is suddenly changed
so that an unburnt spectrum of spin packets N;,w,o
is moved into resonance with the acoustic field E ,
a burn-out pattern which to the first order is pro-
portional to E , will appear. A 90° microwave pulse
applied to the resulting spin spectrum will generate
a free-induction signal which is proportional to the
difference between the Fourier transform of N,',w'o
and the Fourier transform of E, i.e., to the
Fourier transform of the unburnt spin spectrum
superimposed on the acoustic autocorrelation
function. If the spectral width of N, , , is large
compared with the spectral width of E , ;, the tail
of the free-induction signal will once again be
dominated by a periodicity as in Figs. 11 and 12.

C. Nonlinear Interaction between Spins
and Acoustic Waves

In Sec. III B we estimated that the product T'sT,
reached a value <0. 2 in midavalanche and con-
cluded that the transition-probability approximation
would remain valid throughout the avalanche. This
assumption now seems to be confirmed by the sim-
ilarity between the experimental free-induction
signals and the calculated curves in Fig. 11. We
must point out, however, that the form of the free-
induction signal is not quite as decisive a confirma-
tion as it might appear, and that the case for a
transition-probability interpretation rests primar-
ily on our estimates of T, s, T,. Free-induction
traces of a very similar form would probably ap-
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pear even if the interaction were fully nonlinear.

Analytic solutions generally cannot be obtained
in the nonlinear regime, and, to explore the situa-
tion, we have had to resort to numerical computa-
tions. In these computations, the physical situation
was simulated by allowing various waveforms s(¢)
to be incident on a boundary ¢ =0 in a medium con-
taining a uniformly inverted spin population. The
spectral distribution of spin packets was taken to
correspond to the portion of an inhomogeneous
Lorentz line lying between two half-amplitude
points. The evolution of s(¢) was then followed
for successive elements Af, i.e., as a function
of the distance traveled in the medium. %

We have taken a variety of different shapes for
the incident waveform s(#) (including some sample
noise waveforms). In all cases the results had
certain features in common. As long as the chosen
waveform s(¢) remained at a level such that
[Tsdt<« 1 the computation merely yielded amplified
waveforms of the same general shape. Sharp edges
were, however, rounded and noise waveforms were
partially smoothed as one would expect from the
narrowing of the bandwidth discussed earljer [Eq.
(3.16)]. At higher power levels as [T'sdt ap-
proaches w the waveform acquired an oscillatory
tail.® Further evolution tended to conserve this
area and reproduced waves with the same oscilla-
tory feature. 3

As an illustration let us consider the amplifica-
tion of the Gaussian wave shown in Fig. 13(a). The
parameters a, I, v were chosen to be the same as
in our previous estimate. We have, however, as-
sumed that the inverted portion of the line was
only ~; of the full line (as, for example, in some
of the tests discussed in Sec. IIC) and chosen the
acoustic autocorrelation time of our sample wave-
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FIG. 13. Amplification, accordirig to the full nonlinear
theory, of a traveling wave initially characterized by a
Gaussian envelope. Parameters I'=6,2x10!1,
a=5.5x10"%, N w,0=6.4 x10% as estimated in text for
a typical LMN+ Ce sample. 7T'%=3 usec.
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FIG. 14. Autocorrelation function for wave in Fig.
13(d). Compare with Fig. 12 (i.e., autocorrelation for
acoustic spectrum calculated according to transition-
probability theory).

form accordingly. (A longer acoustic autocorrela-
tion time brings about a situation in which the limit
of the validity of the transition-probability model
is approached without the need for wholesale alter-
ations in all the other parameters.) The autocor-
relation time of the input Gaussian wave is 1.4
usec. Since the choice of waveform automatically
sets the appropriate limit on the coherence time

t. was not used for Tz' in this simulation. Instead
we set T,=T,=3 usec. [Since T%is longer than
the autocorrelation time of the sample input wave
s(¢#) it actually has comparatively little effect on
the evolution of the waveform.] Nonlinearly ampli-
fied waves are shown in Figs. 13(b)-13(d) and illus-
trate the course of events which we described above.
The area under the final curve in Fig. 13(d) is
~0.97. The peak strain of 107° is higher than the
value 3.4x%10™® which we estimated earlier and is
indicative of how much more spin energy (or what
margin of error in the earlier estimate®) would be
needed to render the spin-phonon interaction fully
nonlinear.

If the acoustic field consisted of a number of 7
pulses, all closely resembling one another, it is
easy to argue that the free-induction signal gener-
ated by the hole burnt in the line would have the
familiar periodic tail. The argument can be ap-
plied in its most simple form to the “modified”
experiment described in Sec. IIC. The 7 pulses
would burn out a hole (in the side of the line) pro-
portional to the Fourier transform (FT)of this power
spectrum, i.e., to the autocorrelation function of
acoustic pulses themselves. The autocorrelation
function for the final curve in Fig. 13(d) is shown
in Fig. 14. It is similar to the autocorrelation ob-
tained (Fig. 12) by means of the transition-prob-
ability analysis and is qualitatively in agreement
with the observed induction signals.
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Some doubt may arise as to whether an average
over many such autocorrelation functions, arising
from the superposition of 7 pulses of slightly dif-
fering shapes, would still give rise to the periodic-
ity in the tail. This cannot easily be settled by
further computation, but one can at least produce
a plausible reason why this should be so as follows.
The first 7 pulses originate from large-amplitude
fluctuations in the acoustic noise waveform.
Once formed they grow only linearly with distance
traveled (taking all the spin energy in their path),
whereas the rest of the noise waveform continues
to grow exponentially. The 7 pulses which are
formed initially therefore change relatively slowly
while large numbers of new 7 pulses join the popu-
lation, the result being an accumulation of pulses
with a particular range of intensities and with
broadly similar waveforms.

The computations are open to yet another objec-
tion which can only be met by means of qualitative
arguments. It has been assumed that a pulse en-
counters an “unused” inverted resonance line as
it traverses the medium. This may be roughly
justified by picturing the medium as a volume con-
taining a relatively low density of large-amplitude
pulses analogous to the atoms of a perfect gas.
Unfortunately the density cannot remain low as the
avalanche evolves and it is difficult to envisage
what will happen as pulses begin to cross one
another’s tracks. Our attempts to find a reason-
ably economic method of simulating the actual
situation, taking account of partial burn out of
the medium and yet distributing the burn out in a
spatially random manner, have not met with great
success. This and other variations on the problem
would in any case lead to an expenditure of time
and money which hardly seem to be justified in
view of the apparently secondary importance of
nonlinear effects in our particular material.
Should nonlinear interactions prove to be important
in other materials the extensive and growing volume
of calculations in the laser field should be useful
in providing the necessary insights.

IV. DISCUSSION
A. General

In the early stages of this experimental program
it seemed that it would only be possible to explain
the situation in midavalanche in terms of the non-
linear spin-phonon interaction. The periodicities
observed in the tail of the free-induction signal
strongly resembled the periodicities obtained in
nonlinear computations of the acoustic waveform,
and the measured value of the spin-echo phase
memory time T, seemed to ensure [Eq. (3.10)]
that the linear limit would be exceeded before
burn out became appreciable. We have, however,
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argued in Sec. II B that T, does not give the correct
value of Ta' to be used when an amplified noise

field rather than a monochromatic signal is respon-
sible for spin nutation, and that a time approxi-
mately equal to the autocorrelation time of the field
should be used in (3. 10) instead. Also we have
shown that the periodicities can be adequately ex-

plained without recourse to a full scale nonlinear
theory. The choice of an interpretation remains.

somewhat arbitrary, especially in the case where
only a small fraction of the line is inverted thus
giving rise to longer acoustic autocorrelation
times, and, as we have pointed out, it rests
largely on the approximate estimates for the spin
lattice coupling parameter G and for the strain
amplitude s. But the transition-probability ap-
proximation has the great merit of producing a
solution in closed form which is adequate to ex-
plain the data. It is not at all certain that non-
linear theory, based on the computation of special
cases, could provide as satisfactory an explanation.
The equations derived in Sec. II B can easily be
shown to be equivalent to the equations given by
Brya and Wagner. If we take Eqs. (1a) and (1b)
of Ref. 1 and let the spin lattice time due to other
than direct processes T,; and the phonon lifetime
T, tend to infinity we can integrate these equations
to give :

w=%{1-tanh[(S/2T)(t - t,,2)]} , (4.1)

where S is the ratio between the spin energy and
the energy in the resonant lattice modes in thermal
equilibrium. u is the same as N,/N, , in our anal-
ysis, #,, is a constant of integration, and Eq. (4.1)
is the same as Eq. (3. 20) with the power gain con-
stant 2, replaced by S/T,. The value of S/T,

(T, recomputed at 9.1 GHz) in Ref. 1 is~1.4 usec™
and is not materially different from the value 2¢,
~2.2 psec™! which we derive here. A significant
difference does, however, appear in the phonon
lifetime which we measure to be ~20 psec and
which was taken as ~1 usec in*! Ref. 1.

It is perhaps surprising that the long phonon
lifetime was not manifested as a severe “phonon
bottleneck” in the relaxation experiments reported
by Brya and Wagner. The bottleneck is usually
characterized by a parameter o, where o is the
ratio of phonon energy gain from the spin system
to phonon energy loss (Ref. 1, p. 402). It leads to
a lengthening of the observed recovery time in a
spin lattice relaxation experiment such that
T,(observed)=(c+1)T,. If we take a gain parameter
of 1.6 per usec and a phonon lifetime of 20 usec
we obtain the value 0 =32. On the other hand Brya
and Wagner’s relaxation measurements?? on the
same system show a much weaker bottleneck with
o typically 2 or 3.

Brya and Wagner suggest that their interpretation



3 PHONON AVALANCHE IN Ce-DOPED:" -

of the data could be affected by cross relaxation.
This suspicion is borne out by some tests we were
able to make on our samples indicating that the
resonance line, if initially excited in a nonuniform
manner, was homogenized (over a spectral inter-
val ~100 MHz) in times ~T;. In this case the value
of o appropriate to the avalanche will be that at the
center of the line, where the spectral density and
hence the gain is highest, whereas the relevant
value of ¢ in the recovery to equilibrium will be
an average over some effective homogeneous
width. A meaningful estimate of the reduced bot-
tleneck would require a much better understanding
of cross relaxation than presently exists. How-
ever, a consideration of the magnitudes involved
indicates that no serious conflict exists.

B. Role of Phonon Lifetime and of Cross Relaxation
in Modifying the Form of Avalanche Curve

Our procedure in setting T,, -« affords a good
approximation in the initial portion of the avalanche
but a bad one in the tail. From Eq. (3.20) when
t<<ty,5, we have

N,'w/N"w'oﬁl"exp[zat(t—txlz)] . ) (4. 2)

Hence (assuming conservation of the total energy),
the phonon intensity is growing according to the
factor e*t!, i.e., the fractional rate of increase
is 2a;. In order to correct for phonon loss we
should reduce 2w, to 2a,—1/7,,. The fractional
correction 1/2a,T,, is ~ 2% and is negligible in
comparison with other uncertainties.

The effects of phonon loss may show up more
readily in the tail of the avalanche. In the absence
of any loss the avalanche will be described by
N,,o/Ng o0et 2@t 112 [as we can see by setting
t—1t,2>1 in Eq. (3.19)], and the fractional rate of
change will be given by

1 dN,,
N,,wm—_‘_dt =- 20, (4.3)

The decay of N, , arises as a result of the progres-
sive saturation of the spin system by a phonon field
which, according to our assumption of energy con-
servation, is of approximately constant intensity
and contains all the energy initially present in the
spin system. If we now suppose instead that there
has been a loss of energy, which at time ¢ can be
denoted by the loss factor ¢,(¢), then (4.3) becomes

1 dN,,__2a
q,(t)

N,,, dt

We should therefore be able to determine the phonon
loss by comparing the decay constant (1/N,,,)

X(dN, ., /dt) at various points in the tail of the ava-
lanche with the gain constant observed at the be-
ginning. In particular by writing

(4.4)
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g, =g, (et Tom | (4.5)

we should be able to separate out the loss g, (¢")
occurring during the main portion of the avalanche
(ending as ¢') from the loss occurring when little
or no extra energy is being contributed by the spin
system. The latter factor should, as indicated in

Eq. (4.5), result merely from the exponential
decay of the phonon field.

In Fig. 15 we show a sample avalanche curve!
fitted to the expression (M,, /M, ,,0)=%1{1 - tanh[a,
X(t —ty;9)]}. t,, 0ccurs 8 usec after the inverting
pulse and the power gain constant** 20/, =-0.8
usec™. The fit to the first portion of the curve
is good, but the actual values of T,,, and 2a, are
hard to explain in terms of the initial ratio S of
spin to acoustic energy. Using these values in
Eq. (3.24) we should obtain §=e2*tT1/2 =¢84 =602,
whereas as we have indicated in Sec. II B a ratio
>10* is more in line with expectations. A more
striking discrepancy occurs in second half of the
avalanche. Suppose now we try to explain this
solely in terms of phonon decay. The apparent
loss factor ¢(t'), derived by comparing the acoustic
gain constant at ~4 psec after the avalanche with
the magnetization decay constant ~11 usec after
the avalanche, is ~4:1, and the phonon decay time
inferred from the tail itself*® is ~9 usec. This
latter value is ~ half the value measured (for the
same sample) by the method of Sec. IIB. Moreover,
even if we assume that the true phonon decay time
is 9 usec, and not 20 usec as obtained by the Sec.
11 B experiment, we still are unable to account for
the value of ¢(¢") by phonon decay.

3

1.0
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0 ] ] )
[o] 10 20
psec
FIG. 15. (a) Experimental avalanche curve for 0.5%
sample. (b) Ideal curve 1 —tanh[a,(—¢,/5)] where

ti/2=8 usec and 2a,=0.8 usec. Although these param-
eters give a good fit in the first half of the avalanche
there is reason to suppose that 2@, is not the true power
gain constant and that 8 usec is not the ideal half-full
time according to transition-probability theory. The
discrepancy is probably due to spectral diffusion. The
difference between curves (a) and (b) for the latter half
of the avalanche is due partly to spectral diffusion and
partly to phonon decay. )
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FIG. 16. Graph showing filling in of holes burnt in
the resonance line of a 0.5% LMN Ce sample by a 90°
pulse. (a) w;/2r=2.5 MHz (hole ~7 MHz full width
at half-depth), (b)wy/27=5 MHz, () w;/27=10 MHz.

The measurements made on the tail, and the
implausibly small value of S esimated from 2a;p 4,5,
both suggest that phonon decay cannot be the only
factor modifying the avalanche curve from the
idealized tanh shape. We turn therefore once
again to cross relaxation. This process was
clearly responsible for distorting the avalanche
curves obtained in the more concentrated samples
right from the outset. The distortion of the curves
in the dilute samples was much less obvious, but
it may well have led to a fit (to the first half of the
curve) being made with too small a value of a;.
Retaining T,,, =8 usec but setting S=2.2x10* we
should infer a gain constant 2a,=1.25 usec™, or
~1.5 X the value used in the fit. More realistically
yet, reducing 7T,,, to ~6 psec to bring the idealized
curve entirely below the experimental curve, we
should infer a gain constant ~1.7 psec™.

As stated earlier we have not been able to give
a quantitative explanation of these cross-relaxation
effects and we limit ourselves to presenting a
measurement to indicate that they are at least of
the right general order of magnitude. Figure 16
shows the rate of filling in of holes burnt in the
resonance line of the 0.5% sample for which the
avalanche curve has just been discussed. The
holes were burnt by applying 90° pulses with suit-
ably chosen values of H, and the fill-in was ob-
served as a function of time by monitoring with a
two-pulse sequence. The width of a typical ava-
lanche hole lies somewhere between the holes
generated by w,/27=5 MHz and w,/27=2.5 MHz.
The initial filling-in rate (1/M,)(dM,/dt) for a hole
of this width is ~1% per pusec.

It does not appear that this rate is sufficiently
rapid to explain the discrepancy between curves
(a) and (b) in Fig. 15. Even less, it is able to ex-
plain the difference between the experimental
curve (b) and any theoretical curve which might
be drawn with the value of 2, and T, yrealistically
revised as suggested above, We do not know the
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reason for this. It seems possible, however, that
the spectral diffusion process is accelerated during
the avalanche and causes filling in to take place
somewhat more rapidly under these conditions than
it does under test conditions. Spectral diffusion
originates in the local field changes which occur
when the spins in an environment change their
orientation. These changes of orientation are
primarily due to spin-spin flips in LMN +Ce at

1.4 °K, but they will be accelerated if the spin
system is driven by an external field. Some evi-
dence for accelerated spectral diffusion due to rf
fields exists (viz., the instant diffusion process
mentioned in Sec. IID) and we are merely sug-
gesting here that in the avalanche, acoustic fields
may play a similar role.

C. Possible Effects of Anisotropy

In our treatment of the interaction of the acoustic
waves with the spin system we represented the
spin lattice coupling by a single parameter G and
assumed that the LMN crystal was elastically iso-
tropic. This enabled us to discuss the avalanche
buildup in a relatively simply manner, and was
in'a,ny case the best we could do since the individ-
ual components of the elastic tensor and of the
spin lattice coupling tensor have not been meas-
ured. One might ask, however, if a more de-
tailed consideration of the anisotropies in the
problem would not change the interpretation of
the data in some important way.

To see if this is likely to be so, let us consider
a hypothetical situation in which half the lattice
modes (modes A) are strongly coupled to the spin
system and the other half (modes B) are coupled
weakly or not at all. From 7; we should then
derive a coupling constant G(modes A) ~V2G
(average over all modes). TI'(modes A) would be
~V2T (average), and the gain parameters
a(modes A) ~2a(average). If there were no
acoustic coupling between the two types of modes
the avalanche would concern modes A only and
would take place twice as fast as we have assumed.
The nonlinearity test expression I'sT, [Eq. (3.10)]
would be V2 times as large as in the averaged out
case.

In practice, of course, energy is likely to be
transferred from modes A to modes B at each
boundary reflection in the LMN crystal. In our
sample these reflections occur on the average
~2 mm from the point where the acoustic energy
is emitted thus suggesting that the mode transfer
time ¢, will be several usec. However, even if
transfer were highly probable at each reflection
so that #,5 ~1 psec, the avalanche would build up
in much the same way as if modes B were entirely
decoupled. This is because the growth of energy
in modes B is delayed, causing the energy density
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in modes B (during the early part of the avalanche)
to be less by a factor ~exp[2a,(modes A)t 5] ~ 25.
In the later stages of the avalanche, where little
acoustic gain is taking place, the energy would
tend to be equalized, leading to a net loss of ener-
gy from modes A and an appropriately reduced
burn-out rate for the spins.

The above example illustrates the following three

ways in which the theoretical predictions might be

modified if there were strongly preferential coupling

into a fraction of the total lattice modes: (a) The
first portion of the avalanche would take place at a
rate more rapid than the rate we have estimated in
Sec. II1 B; (b) there would be more likelihood of
the interaction becoming nonlinear; and (c) there
would be an apparent loss of acoustic energy be-

tween the initial and final portions of the avalanche.

Our measurements of T,,, tend to contradict (a).
Prediction (b) probably has little to do with the in-
terpretation of results. Earlier estimates (Sec.
111 B) suggest that there is a sufficient margin to
ensure that I'sT,< 1 even if T is increased by a
factor of 2 or 3 for a given set of modes (besides
which nonlinearity might not significantly affect
the observations, Sec. IIIC). Of the three pre-
dictions (c) appears to be the only one which is
positively supported by the results — specifically
by our observation that the form of the avalanche
curve can be explained by assuming that there is
a loss ¢(t")~4 of phonon intensity between the ini-
tial and final portions of the avalanche. Earlier
we ascribed this effect to distortion of the ava-
lanche curve by cross relaxation. We now see that
a contribution may arise from phonon transfer as
well. However, no corresponding loss was seen
in the phonon lifetime experiments where a trans-
fers 20% of acoustic energy into inactive modes,
occurring in a time ~1 usec, would havebeen easy
to see. We therefore remain with our previous
explanation of the form of the avalanche curve, and

conclude in general that little evidence for anisot-
ropy of the phonon field can be derived from the
interpretation of the results presented here.

D. Summary

We have shown that the phonon lifetime in sam-
ples of LMN showing a phonon avalanche is long,
and that it has little or no influence on the form of
the avalanche decay curve. Cross-relaxation ef-
fects are larger and determine (a) the limit of
concentration at which avalanche effects can be
seen by means of 180° pulse experiments, (b) the
narrowest spectrum of spin packets which will
sustain an avalanche when less than the full line
is inverted, and (c) the “anomalous” form of the
avalanche tail. The phase memory time for spin
packets is comparatively long, but is irrelevant
to the question of spin-phonon coherence, this being
determined primarily by the autocorrelation time
of the acoustic field generated in the avalanche.

In view of the short coherence time a transition-
probability theory is adequate to describe the spin-
phonon interaction. This theory predicts a decay
curve of the form 1 - tanh(at) for the magnetization
in the center of the line, modifications of this
shape being mainly due to cross relaxation as noted
above. The transition-probability theory also gives
an adequate account of the form of hole burnt out by
avalanche and the form of the acoustic spectrum,
both of which can be tested experimentally by a 90°
pulse free-induction technique.
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ability model of the avalanche.
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estimate, spectral diffusion seemed to be insufficient
by a factor ~2. We believe, however, that the explana-
tion is essentially correct, and that the discrepancy
arises from the difficulty of parametrizing the spectral
diffusion rate in LMN+Ce., The Lorentzian diffusion
analysis given by W. B. Mims, K. Nassau, and J. D.
McGee, Phys. Rev. 123, 2059 (1961) could not be fitted
to the results of stimulated echo measurements which
we made on LMN +Ce.

2The experiment might ideally be performed by
switching a second unused resonance line (e.g., another
hyperfine component) into the position previously occu-
pied by the first. Unfortunately LMN +Ce provides no
second line for use as a phonon monitor and we were
forced to use the tail of the one and only resonance line.
In order to preserve the tail from the direct effect of
the 180° pulse we reduced H; (and lengthened the pulse)
when performing this experiment.

Bpor a comparison of induction traces observed in
the normal and in the modified experiment see Ref. 10,
Fig. 2.

1See J. R. Klauder and P. W. Anderson, Phys. Rev.
125, 912 (1962), Eq. (4.24).

’The problem of estimating 7'y from the echo decay
envelope in the LMN +Ce system at X Band may be ap-
preciated by referring to J. A. Cowan and D. E. Kaplan,
Phys. Rev. 124, 1098 (1961), Fig. 4.

8The exact adjustment was easily made by testing for
the inversion of the spin-echo signal with the current
pulse applied during a two-pulse echo sequence.

This, of course, points merely to a shortcoming in
our technique. It does not prove that a phonon avalanche
would be unobtainable if the line were more efficiently
inverted, as, for example, by means of a shorter 180°
pulse (with larger power H;) or by an adiabatic fast
passage. Our own studies have been limited by the
characteristics of our apparatus and by the fact that the
spectral diffusion times shorten more rapidly than the
avalanche times as the concentration is increased.

18The initial thermal noise power will depend on the
temperature and not on the sample. The acoustic power
reached and the half-full point will be proportional to the
spin concentration.

¥7he two-pulse sequence required ~2 usec to com-
plete. We have generally assumed that the first micro-
wave pulse of the sequence would arrest the progress of
the avalanche by destroying the inversion for the spec-
tral region which is being sampled in the center of the
line. This assumption may not be a wholly reliable one.
Even a weak continuing avalanche would in a strong sam-
ple have a considerable effect on the echo amplitude be-
cause of instantaneous diffusion (Sec. IID).

% The development of small cracks in the crystal could

. increase the linewidth. Such cracks would not necessar-
ily slow down the avalanche, however, if the crystallites
remained acoustically isolated from one another.

' Heating of the lattice phonons reduces the gain G,
which is needed to reach the midavalanche point. Ac-
cording to Eq. (2. 2) the fractional reduction is given by
In(phonon heating)/InG,. For the phonon heating ratios
which concern us here this reduction is ~10%.
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tion of the spin system. The axes of quantization and
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2The equations describe the evolution of a complex
vector s,=s which denotes the amplitude and phase of
the acoustic field. The equation for s, is

aa_s;+ %%st-% ie'aN,

30This is the model used by Brya and Wagner in Ref. 1.
It is also the model used to calculate laser gain in Ref.
22, Subsequent laser calculations (Refs. 23—27) take
full account of the nonlinearity of the interaction.

31Brya and Wagner (Ref: 1); P. L. Scott and C. D.
Jeffries [Phys. Rev. 127, 32 (1962)] assume a value
v=2.5%10° cmsec™!. F.I. B. Williams, D. C. Krupka,
and D, P, Breen [ibid. 179, 255 (1969)] suggest
v=1.84x10° cmsec™. This latter value is inferred
from specific-heat data reported elsewhere.

322.1 is the density of Ce;Mgy(NOy) 1y, 24H;0 as
determined by the x-ray measurements of A. Zalkin,

J. D. Forrester, and D. H. Templeton, J. Chem. Phys.
39, 2881 (1963). We adopt it for LMN without attempting
to correct for the change from Ce to La.

W. J. Brya and P. E. Wagner [Phys. Rev. 157, 400
(1967)] obtain 1/7T1=6.02X 10%%4T for the direct process
relaxation rate. This corresponds to 1/7;=41T sec™! at
9.1 GHz.

341f experiments are made in which only a fraction of
the line is inverted we must replace Aw; by a smaller
number. £, will then be longer and T, may not be
negligible in comparisons with it.

%Since E,+ 37wN, , =~ 3%wN, , o the acoustic autocor-
relation functions might be inferred from the ‘“free-
induction traces” calculated in Fig. 11 by subtracting
out the Fourier transform of the unburnt line N, , o,
i.e., by subtracting the exponential ¢~4¢L?,

36Appropriate computational procedures have been
discussed by the authors referred to in Refs. 23—27 and
in particular by Icsevgi and Lamb, Ref. 27. Essentially
our procedure was as follows: Time was divided into
elements At such that vA¢=A¢ and shifted by the trans-
formation ¢ =¢—-£¢/v (i.e., the first time element for
any space coordinate {=nA¢ was taken to correspond to
the instant at which the wave front first arrived there).
Space and time were thus represented by a numerical
lattice, a third dimension being introduced to take ac-
count of individual spin packets in the line. At a given
coordinate ¢ =nA¢ the effect of s(#, £) on each of the
spin packets was computed by making suitable rotations,
etc., of the vector N. A summation over spin packets
then yielded resultant values of N, (', ¢), etc., which
were used in conjunction with Egs. (3.9) to calculate the
increment As(#’¢) in s. Finally, the sum s+As was
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transferred to the space coordinate (+1)A¢ where,
with a new unused spin packet distribution (consisting
at ¢'=0 of the component N, only), the entire operation
was repeated.

31The appearance of this oscillatory tail has been
noted in many analogous laser calculations. Particular
attention is drawn to it in the conclusions of Ref. 27.

In Refs. 25 and 26 it is pointed out that it is related to
the inhomogeneous broadening of the line.

38The gain in energy (< [s?ds) is brought about by
scaling ¢ to shorter intervals and increasing s.

9% we had actually made our earlier calculation using
the ten times narrower inverted line we should have de-
duced a value of only ~10° for s. The margin of error
would then have to be ~10x.

“The evolution of a laser pulse from noise is discussed
by J. A. Fleck, Jr., Appl. Phys. Letters 13, 365 (1968).
4 As pointed out in Sec. I B it is this relatively long
phonon lifetime which enables us to obtain approximate

analytical solutions for the avalanche burn out.

42yWe were not able to make any reliable determinations
of the bottleneck constant o by observing lattice relaxa-
tion in our samples. With the apparatus available it
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was not possible to obtain uniform initial excitation of
the resonance line. Some preliminary tests showed
that this deficiency would lead to major errors in the
result.

$considerable care was taken to ensure that the
sampling fields H; were confined to a sufficiently nar-
row spectral region so that the trace was not distorted
by averaging over tanh curves characterized by differ-
ent values of @; and ¢y/;. The measurements were made
in the center of the burn-out region, and tests were
carried out to ensure that the result was not materially

affected by any further narrowing of the sampling width.

“This is smaller than the gain constants which were
estimated in Sec. IIB. It is adopted here in an attempt
to fit the initial portion of the avalanche curve. As we
point out in the next paragraph, the avalanche curve is
probably distorted by cross relaxation.

51t was found that (1/M 2 (dM,/di) decayed exponentially
with time in the range from 11 to 25 usec as suggested
by Eq. 4.5). Signal to noise was poor, however, and a
fit could equally well have been made to other forms of
decay function.
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The electron-paramagnetic-resonance spectra of 1% Ce®*, 1% Yb%*, 0.1% Er®*, and 1% Nd** in
PrF; were observed at 4.2 °K. The g factors are found to be g,=0.39+0, 03, g,=0.946 =0, 002,
£.,=2.69+0.02, 6=15,5°+0.5°for Ce®; g,=2.801+0,015, g,~4.48+0,03, g,=11,36+0.20, 6
=41,5°:1°for Ex%*; £,=38.47+0.03, g,=5.427 £0.03, g,=1.205+ 0,01, 6=9°x1°for Yb%; and
£,=1.500%0,005, g,=1.094%0.003, g, =2,937+0,017, 6=67°+2° for Nd*. The y axis is chosen
inthe plane perpendicular to the ¢ axis. The other orthogonal axes show no clear relationto the
crystal faces, the z axis being rotated 6 degrees from the ¢ axis. The hyperfine splitting due
to Er'®" of 47+3 G and due to Yb'™! of 577 +10 G were observed in the y-axis spectra. The
spin-bath relaxation rates 73! for these same trivalent rare earths PrF were observed in the
temperature range 1.3 <T<4,5°K at frequencies ~ 8,9 GHz, The Nd* data were fitted by
T3'=2.85T+0.214x10"27% +0.378 x101¢81-8/T (¢ axis); the Er®* data by T31=1437T +0. 125
x10'%-%4/T (x axis showing a strong cross-relaxation first term; the Ce®* data by T';!
=0.753T+0.276 107379 +0, 171 X10*1¢-"83/T (¢ axis) where an Orbach term «e~%/7 may
also be added, possibly indicating relaxation via the first excited level of Pr®*; and the Yb%*
data by single terms proportional to TZ, which is probably due to cross relaxation to pairs.

I. INTRODUCTION

The availability and stable nonhydroscopic nature
of the lanthanum trifluorides have lead to their
study as possible maser materials. Consequently,
electron-paramagnetic-resonance (EPR) and spin-
relaxation experiments have determined the
rhombic g-tensor components and relaxation mech-
anisms of trivalent rare-earth ions'~* substituted
in crystals of LaF;. Our work extends this inves-
tigation to PrFy, * which, like LaF;, has the tyson-

ite crystal structure.

Three closely related crystal structures have
been proposed for tysonite from the x-ray mea-
surements. =% All three are consistent with the
Faraday-rotation experiments, !!''2 as interpreted
by Van Vleck and Hebb, '° but fail to account for
the crystal-field symmetry observed at the lan-
thanide site by EPR spectrometry. Recent inves-
tigations of the Raman-active phonon modes!®!'4
plus the previous EPR observations in LaF; '~®
have indicated convincingly that the homomorphic



